RNA Structural Segmentation
نویسندگان
چکیده
We describe several dynamic programming segmentation algorithms to segment RNA secondary and tertiary structures into distinct domains. For this purpose, we consider fitness functions that variously depend on (i) base pairing probabilities in the Boltzmann low energy ensemble of structures, (ii) contact maps inferred from 3-dimensional structures, and (iii) Voronoi tessellation computed from 3-dimensional structures. Segmentation algorithms include a direct dynamic programming method, previously discovered by Bellman and by Finkelstein and Roytberg, as well as two novel algorithms - a parametric algorithm to compute the optimal segmentation into k classes, for each value k, and an algorithm that simultaneously computes the optimal segmentation of all subsegments. Since many non-coding RNA gene finders scan the genome by a moving window method, reporting high-scoring windows, we apply structural segmentation to determine the most likely 5' and 3' boundaries of precursor microRNAs. When tested on all precursor microRNAs of length at most 100 nt from the Rfam database, benchmarking studies indicate that segmentation determines the 5' boundary with discrepancy (absolute value of difference between predicted and real boundaries) having mean -0.640 (stdev 15.196) and the 3' boundary with discrepancy having mean -0.266 (stdev. 17.415). This yields a sensitivity of 0.911 and positive predictive value of 0.906 for determination of exact boundaries of precursor microRNAs within a window of approximately 900 nt. Additionally, by comparing the manual segmentation of Jaeger et al. with our optimal structural segmentation of 16S and 16S-like rRNA of E. coli, rat mitochondria, Halobacterium volcanii, and Chlamydomonas reinhardii chloroplast into 4 segments, we establish the usefulness of (automated) structural segmentation in decomposing large RNA structures into distinct domains.
منابع مشابه
Cluster-Based Image Segmentation Using Fuzzy Markov Random Field
Image segmentation is an important task in image processing and computer vision which attract many researchers attention. There are a couple of information sets pixels in an image: statistical and structural information which refer to the feature value of pixel data and local correlation of pixel data, respectively. Markov random field (MRF) is a tool for modeling statistical and structural inf...
متن کاملAutomatic discovery of sub-molecular sequence domains in multi-aligned sequences: a dynamic programming algorithm for multiple alignment segmentation.
Automatic identification of sub-structures in multi-aligned sequences is of great importance for effective and objective structural/functional domain annotation, phylogenetic treeing and other molecular analyses. We present a segmentation algorithm that optimally partitions a given multi-alignment into a set of potentially biologically significant blocks, or segments. This algorithm applies dyn...
متن کاملA hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI
Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...
متن کاملA Hybrid 3D Colon Segmentation Method Using Modified Geometric Deformable Models
Introduction: Nowadays virtual colonoscopy has become a reliable and efficient method of detecting primary stages of colon cancer such as polyp detection. One of the most important and crucial stages of virtual colonoscopy is colon segmentation because an incorrect segmentation may lead to a misdiagnosis. Materials and Methods: In this work, a hybrid method based on Geometric Deformable Models...
متن کاملA hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI
Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing
دوره شماره
صفحات -
تاریخ انتشار 2010